

2026 YEAR OF THE
Fire Horse

EurSafe News

VOLUME 25 #5 DECEMBER 2025

For better and for worse, the future is here. It was, however, always thus. The immediate future that we are looking into as researchers in the European society for agricultural and food ethics is one where technology and our relationship with

nature will be playing a role in ways that we might not yet be able to clearly visualize.

But visualize we must and so this issue of the EurSafe Newsletter includes an account from the Asia-Pacific International Conference on Agricultural and Food Ethics (APSAFE) where AI opportunities and challenges played a major role. We also have a book review on how we are to teach and educate in a future that increasingly becomes the Anthropocene. Finally, there is a report on a new and interesting research project about the possibilities for AI to help us in our understanding of animals. I hope you are all as fascinated with and enjoy these short texts as much as I did.

Now that we have finally put the holidays behind you I am reminded of a favourite philosophy quote and I advise you, as Marx did to Engels in a Christmas letter of 1857: “*I trust you won't go out tippling [heavy drinking] too much during the holiday [...] and that you'll pay due attention to your health.*” I and the EurSafe Newsletter crew wish you all the very best for the new year.

Jes Lynning Harfeld

CONTENTS

APSAFE 2025 Kate Millar and Raymond Anthony | 2

Teaching for the future: Ethics, citizenship and responsibility in the anthropocene Leire Escajedo San-Epifanio | 4

The responsible media representation of AI for non-human animal communication Caatje Kluskens | 7

From the executive committee Franck Meijboom | 11

Contact | 18

APSAFE 2025

Showing the heart and soul of Asian-Pacific food, animal and agricultural ethics in Seoul

Kate Millar and Raymond Anthony

In 2025, the Asia-Pacific International Conference on Agricultural and Food Ethics (APSAFE) was hosted by the Korean Society for the Ethics of Artificial Intelligence (KSEAI) and focused on 'Agricultural and Food Ethics in the Age of Artificial Intelligence'. It is twelve years since the first APSAFE conference was held in Bangkok, Thailand, in November 2013 at Chulalongkorn University, although much has changed across the field of food, animal and agricultural ethics and in terms of global challenges, social-political contexts and the emergence of new technologies but the excitement, commitment and quality of the activities across the APSAFE community remains the same as in those first days.

This year's APSAFE 2025 Conference was organised by Seoul National University of Education (SNUE) and held on their super city centre campus, close to the famous Gangnam district of Seoul. The Conference was led by Prof. Sunyoung Byun, SNUE, working with Dr. Tim C. Lee, Sangmyung University, and Prof Shin Kim, Hankuk University of Foreign Studies with support from Prof Myung-Sun Chun

from the College of Veterinary Medicine, Seoul National University (SNU). The organisers developed an exciting focus, defining the main theme of the Conference around current AI opportunities and changes, as well as creating spaces for the inclusion of wider applied ethics work spanning food culture and plant integrity through to important contributions on veterinary ethics. Presentations from the participants addressed issues of sustainability in the food system, AI and animals, AI and food technology, global food justice amid technological change, with talks also spanning topics on the possibility of dignity for plants to perceptions of food self-sufficiency. Sessions emphasised interdisciplinary dialogue across philosophy, policy, veterinary and animal ethics, science, and social studies and the programme fostered engagement between ethical theory and real-world practice.

Participants attended from across the region including some of the regular attendees from Japan, China, Korea, Taiwan and the Micronesian island of Guam through to new participants from Korea and beyond. A number of the EurSafe faithful also attended from the USA and UK and it was a pleasure to explore and discuss the opportunities for transition to sustainable and regenerative food systems, and to explore perspectives on the knowledge systems and social practices in the Asia-Pacific region. The APSAFE community is flourishing with core members spanning the region. Prof Kazuhiko Ota, Nanzan University, Japan, and Prof Kirill Thompson, National Taiwan University have ensured the sustainability of the APSAFE community (APSAFE) in recent years, with the last three conferences being held in Taiwan, then twice in Japan, first online, and then with an excellent in person conference in 2023 in Nagoya.

For those of you who have not come across APSAFE before it is an independent organization and an international platform for researchers and practitioners interested in ethical issues related to transitions to sustainable and regenerative food systems. The Conferences are now held biannually and there are already plans for APSAFE 2027, which would be held in the Autumn 2027.

With the commitment of Prof. Sunyoung Byun and colleagues and support from the Korean Society for the Ethics of Artificial Intelligence (KSEAI), this year's APSAFE conference has provided an excellent platform to further build the APSAFE community and hopefully a number of APSAFE 2025 attendees will join the EurSafe community in Turkey in 2026. It would be a delight to

The campus with the snail statues in Seoul.

welcome and host our colleagues in Europe next year. In further APSAFE news and recognising the exciting work being conducted in the region and being shared at the APSAFE Conferences over the years, Prof Kazuhiko Ota, Nanzan University, Japan and the conference facilitator for APSAFE Nagoya (2023) and Prof Raymond Anthony, University of Alaska Anchorage, USA, are in the process of organizing an edited volume based on presentations from the last six APSAFE conferences. The edited volume has two central aims. First, it aims to develop a regionally grounded framework for food and agricultural ethics discourses by both exploring, engaging and integrating diverse approaches to justice and key regional issues and leveraging ethical, societal, governance and cultural scholarship and research regarding just food systems transitions. Second, it mobilizes this framework to provide a platform for inclusive deliberation and analysis of concrete opportunities and challenges facing foodscapes across the Asia-Pacific, from Southeast and South Asia to Pacific Island states and East Asia.

So, we encourage the EurSafe community to not only watch this space for this important academic contribution, but also please consider planning in an APSAFE Conference as part of your academic dissemination plans for 2027. It is worth the effort not just in terms of sharing academic outputs, it is also good for your academic soul, connecting to inspiring colleagues who also share values of collegiality, commitment and the importance of our work in an ever-changing world.

Teaching for the future: Ethics, citizenship and responsibility in the anthropocene

Leire Escajedo San-Epifanio

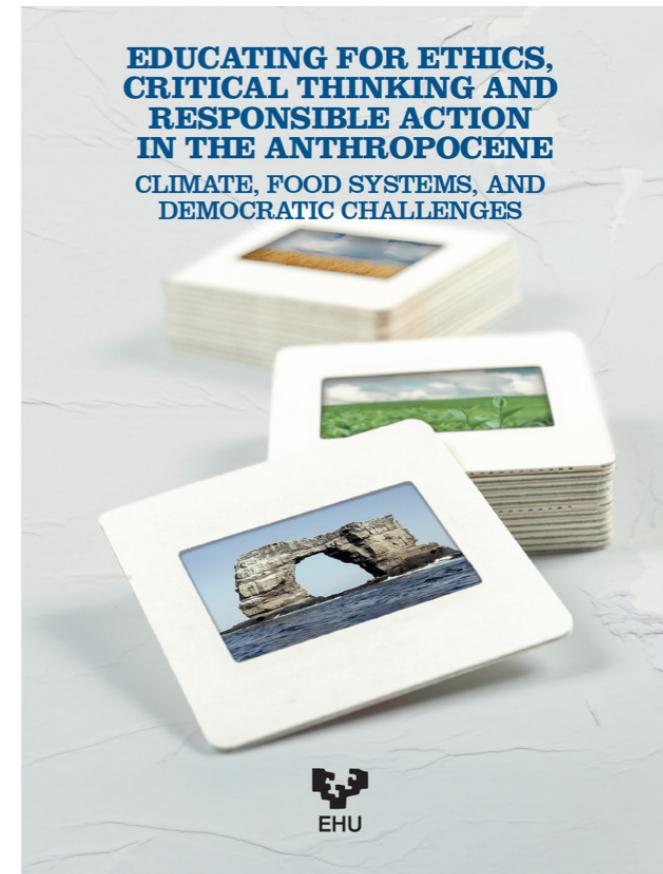
In a century marked by climate instability, democratic erosion and profound transformations of global food systems, universities face an unavoidable question: How do we teach for the future – one that is already arriving faster than our curricula?

The edited volume *Educating for Ethics, Critical Thinking and Responsible Action in the Anthropocene*, coordinated by A. Jelenkovic Moreno, M. E. Ibáñez Pérez-Zamacona, A. Lasá López, A. Inza-Bartolomé, L. Escajedo San-Epifanio and A. Poveda Zabala, takes this question seriously and offers a rich, interdisciplinary answer.

Bringing together scholars from law, ethics, political theory, food studies, environmental humanities, literary studies, genetics and education, the volume argues that the Anthropocene is not only an environmental threshold but also a pedagogical one. If students are to face the challenges of a world shaped by socioecological disruption, higher education must place ethics, critical reasoning and civic responsibility at its core.

The Opening Chapter by Jelenkovic Moreno, Ibáñez Pérez-Zamacona, Lasá López, Escajedo San-Epifanio, Poveda Zabala and Inza-Bartolomé establishes this position clearly. Ethical formation, they argue, is inseparable from civic formation: it means cultivating the ability to deliberate, to imagine alternatives and to act responsibly amid structural uncertainty. This framing underpins the entire book,

giving coherence to a volume whose strength lies precisely in its diversity.


One of the dominant threads in the collection is the emphasis on experiential and collaborative learning. Several authors show how games, simulations and embodied exercises can make ethical dilemmas tangible. **I. Filibi and I. Alonso Sanz** (*Educating for Transformative Citizenship: The Potential of Cooperative and In-Person Role-Playing Games in University Education*) explore cooperative role-playing as a way to develop democratic skills – negotiation, empathy, and deliberation – while exposing students to plural perspectives. Their approach resonates with broader debates on democratic resilience, highlighting the classroom as a microcosm of civic practice.

Donald Bruce (*Interactive Learning about Ethical Issues in Genetic Modification Using a Democs Card Game*) presents the Democs method, originally created for public engagement, now adapted for teaching. Through structured cards and staged dialogue, students confront the complexities of genetic modification – scientific uncertainty, public values, regulatory trade-offs – without collapsing into either technocratic certainty or ideological positions. It is a model of responsible innovation teaching that foregrounds reasoned deliberation.

This attention to interactive decision-making continues with **Muhammad Adeel and Michael G.K. Jones** (*The Biotech Game: A Negotiation Simulation on the International Governance of Biotechnology and a Science Diplomacy Deliverable*). Their negotiation game immerses students in the geopolitics of biotechnology governance, highlighting conflicts over intellectual property, global inequality and scientific diplomacy. The simulation illustrates how ethics education can prepare students for real-world arenas where scientific expertise and political power collide.

Book Review of *Educating for Ethics, Critical Thinking and Responsible Action in the Anthropocene*

EHU Press, University of the Basque Country (Bilbao, Spain). ISBN: 978-84-1319-669-5. CC BY-NC-ND. Available in full open access (free download). [Read more](#)

But experiential learning in this volume is not only about negotiation or policy design. Cultural and narrative tools also play a central role. **Simon Meisch** (*Memes and the Literary Classroom Conversation – On Dealing with Heterogeneity in Interdisciplinary Ethics Classes*) offers an unexpected but compelling argument for incorporating memes into ethics teaching. Far from trivial, memes create shared reference points, reduce participation barriers and help articulate moral intuitions in ways that resonate with today's students.

Literature provides another powerful entry point. **Maite Aperribay** (*Literature and Sustainable Development Goals: Teaching ethics and sustainability in a university classroom through Children's and Young Adult Literature*) shows how children's and young adult fiction can be used to discuss sustainability and justice. Narrative worlds open emotional and analytical space, enabling students to confront vulnerability, ecological crisis and the ethical implications of possible futures.

The volume also explores the institutional and structural dimensions of the Anthropocene. **Ainhoa Lasá López** (*The Paradoxes of the Environmental Rule of Law and the Constitutionalisation of the Ecological Mandate Under the Dogma of Capital Ecology*) offers a sharp critique of

ecological constitutionalism. She argues that while environmental rights proliferate in legal texts, they remain constrained by deeper economic logics – what she calls *capital ecology*. Her chapter gives students conceptual tools to understand why environmental mandates often fail in practice.

Along similar lines, **M. Díez Sarasola** (*Political Trilemmas within a New Socioecological Paradigm*) examines the tensions between ecological sustainability, social equity and democratic decision-making. These political trilemmas reveal the difficult trade-offs shaping public policy in the Anthropocene, offering a clear, accessible framework that helps students make sense of contemporary political ecology.

Food systems, another central site of Anthropocene ethics, receive sustained attention. **Amaia Inza-Bartolomé** and **Ixone Fernández de Labastida** (*Charity or Justice? Rethinking Charitable Food in Light of the Human Right to Food*) critique charitable food assistance from a human-rights perspective. They argue that charity often obscures structural injustice and weakens the recognition of food as a legal entitlement. This analysis challenges students to rethink well-meaning practices that may inadvertently perpetuate inequality.

Leire Escajedo San-Epifanio, **Aline Jelenkovic Moreno**, **Maria Eugenia Ibáñez Pérez-Zamacona**, **Alaitz Poveda Zabala** and **Esther Rebato** (*Globalized Diets, Consumer Rights, and Food Citizenship: Reclaiming Ethical Choices*) broaden this discussion through the lens of consumer rights and food citizenship. Their chapter shows how globalized diets limit autonomy and erode food sovereignty, proposing instead a model of consumption grounded in democratic participation and ethical agency.

Ecological conflicts become tangible in **Leire Escajedo San-Epifanio**'s case study (*The Iberian Wolf Case: A Contested Conservation Dilemma at the Crossroads of Law and Ethics*), which examines tensions between biodiversity protection, rural livelihoods and cultural identity. The complexity of this conflict provides an excellent pedagogical tool, illustrating how ethical reasoning operates within competing frameworks of value and interest. A different dimension of Anthropocene pedagogy appears in **Raymond X. Anthony**'s contribution (*Eco-Anxiety and Animal Ethics: Environmental Ethics Pedagogy through Role-Playing and Ethics Roundtables*). Recognizing the emotional dimension of climate crisis, Anthony

argues that ethics education must address eco-anxiety as a legitimate moral and pedagogical concern. Through role-playing and structured dialogue, students learn to articulate emotional responses and integrate them into ethical reflection, transforming anxiety into engagement rather than paralysis.

Finally, **Escajedo San-Epifanio**, **Ester Suñén** and **Javier Unceta-Barrenechea** (*Beyond Climate Litigation: Civic Action as a First Step Toward Democratic Engagement and Environmental Justice*) challenge the dominance of climate litigation in public debates, arguing instead for the primacy of civic action and democratic participation. Their chapter reframes climate responsibility as a collective democratic project, connected to everyday forms of agency.

Across all these contributions, the book's strengths are clear: a remarkable interdisciplinarity; a rich balance between analytical depth and practical tools; and a sustained commitment to justice, democracy and responsibility. The diversity of methods – role-playing, card-based deliberation, negotiation games, literary analysis, case studies – means that instructors can immediately adapt many of the ideas to their own classrooms.

Photo credits

Header frontpage: Vecteezy
 Introduction: J. Harfeld (own)
 APSAFE text: K. Millar (own), R. Anthony (own),
 picture of campus (Millar)
 Book review: L. Escajedo (own), book cover (EHU
 Press)
 Project on AI: Caatje Kluskens
 Franck Meijboom: Ed van Rijswijk

The responsible media representation of AI for non-human animal communication

Caatje Kluskens

Caatje Kluskens, MA, is a PhD candidate at Wageningen University & Research. Her project, *The Responsible Media Representation of AI for Non-Human Animal Communication*, is part of Bernice Bovenkerk's Vici research project, *The Promise and Perils of Digital Technology for Human-Animal Relationships*.

Could AI help us to understand other animals?

Throughout decades of research, scientists have explored methods to communicate with non-human animals. Allen and Beatrix Gardner taught American Sign Language to chimpanzees¹. David Premack, a cognitive psychologist, trained chimpanzees to utilize a symbolic communication system constructed from tokens². Researchers have also created computer interfaces specifically for bonobos to select words and form sentences³. With these methods, the researchers had some success in communicating with primates. Some of the experiments touched on aspects of language, but the communication systems the researchers created did not result in the development of an 'interspecies language'.

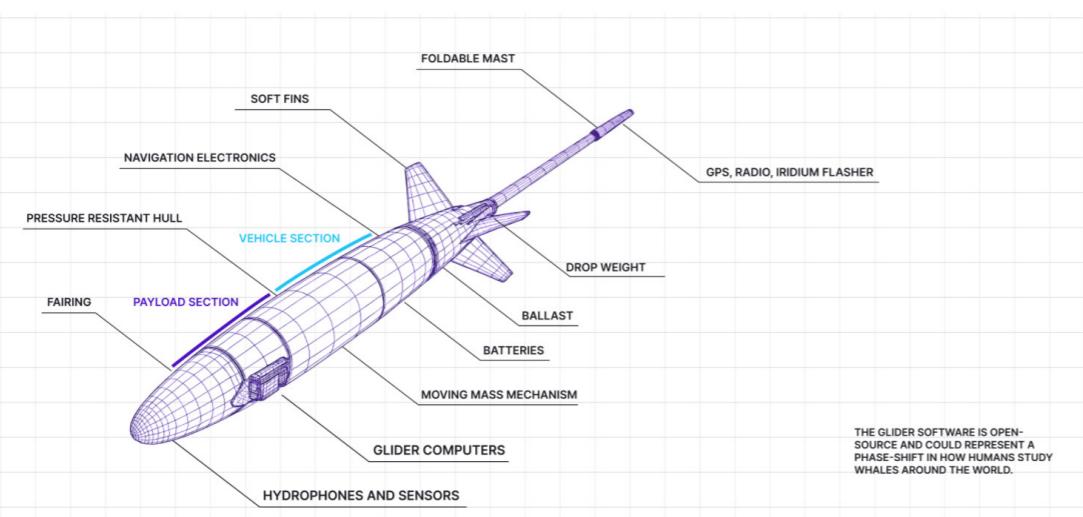
The animals in the experiments were trained to use human communication systems, grounded in a human *umwelt*, and the evaluation was based on human intellectual and communicative standards. The research offers some insights into other animals' cognitive and learning abilities, but it does not provide any definitive conclusion about the animals' communicative capabilities. The studies were conducted in artificial environments, with animals raised by humans, with tests according to human frameworks. As such, the research does not capture the full spectrum of communication that may occur among individuals within groups in

Caatje Kluskens
 PhD Candidate in Philosophy
 at Wageningen University &
 Research
 caatje.kluskens@wur.nl

their natural habitat, where their communication systems have evolved. Instead of teaching captive animals to use human language or communication systems, some researchers have started to attempt to decode the communication of animals themselves in their natural environments.

Many animal species utilize communication methods that involve sounds, colors, scents, and electrical signals that fall outside human sensory abilities. For example, humans are unable to perceive the infrasonic vocalizations of elephants⁴ or the ultrasonic calls of bats, moths, tarsiers, and sloths, due to the limitations of the human hearing range⁵. While humans can detect rat vocalizations within a specific frequency range, our hearing fails to register the higher-pitched sounds emitted by rats during states of excitement⁶.

How technology brings us closer to understanding animal voices


Recent advancements in recording technologies, such as high-frequency microphones and electrophysiological tools, along with research methodologies like bioacoustics and machine learning algorithms for signal processing, have made it possible to record and analyze these previously inaccessible vocalizations. Various developments in artificial intelligence research have provided researchers with tools to start developing artificial intelligence for decoding non-human animal communication. Firstly, a new approach to the translation of languages through machine learning was discovered. Instead of training an algorithm on dictionary-based datasets, in this new method, the algorithm analyzes a written dataset to construct a shape, known as a latent space, representing the entire language. The algorithm searches for patterns in the relationships

between words. Similar or associated words are placed close to each other, and less associated words are further away from each other. For example, the words 'water' and 'wet' are semantically related to each other. Deep neural network algorithms place each word into a map representing the relationship to all other words. This multidimensional geometric structure enables the algorithm to decode previously unknown languages⁷. Artificial neural network-based algorithms surpass dictionary-based algorithms, even in translating between distant human languages⁸. A research team from MIT extended these techniques from text to speech in 2018. The researchers were able to design an algorithm that used acoustic recordings of only a few hundred hours of a human language⁹. These two developments established the groundwork for automated speech recognition and speech-to-text translation systems for languages with limited resources. These developments open the door to the application of AI to unknown non-human communication systems.

How Project CETI monitors sperm whales

The Cetacean Translation Initiative (CETI) was initiated in 2021 by an interdisciplinary group of researchers aiming to decode sperm whale communication through the use of machine learning techniques and non-invasive robotic technologies. Project CETI argues that decoding whale vocalizations is achievable through the application of linguistic methodologies and information theory¹⁰. To monitor the whales, the project developed various robotic technologies. The CETI Glider System is a device that can travel alongside specific whales for hundreds of kilometers to gather data. In addition, aerial drones are utilized to collect contextual information during vocalization events,

The Technology

CETI Glider System

and suction-cup tags are placed on the whales' backs to record data. These tags naturally fall off after some time¹¹. The tags are designed to be as non-invasive as possible, yet the monitoring of the whales raises ethical questions. Even if we use non-invasive methods, is constant monitoring a violation of the whales' right to privacy? Do whales even have the right to privacy? If so, is the potential to advance conservation efforts by raising public awareness through the discovery of a whale language worth compromising such a right to privacy?

The challenge of understanding other species

While the researchers might develop the ability to interpret and even produce whale vocalizations, true understanding across species might be hindered by funda-

mental differences in sensory perception, cognitive processes, and lived experiences. Our understanding of the world is confined to the limits of human perception and cognition, which means it excludes forms of knowledge and intelligence that exist beyond the reach of human concepts. Even with deliberate efforts to prevent it, as a human-made system, AI for non-human animal communication inherently carries an anthropocentric bias by reflecting assumptions about what language should be. It may misinterpret whale communication by attempting to understand it through a human linguistic framework. However, it is important to note that AI possesses abilities humans lack, such as detecting patterns within enormous datasets that exceed human comprehension. In this sense, it is significantly less anthropocentric than the sign language studies of the 1970s and 1980s.

But what if whales are not interested in engaging with us, and we interpret their indifference as a lack of intelligence? Another risk lies in the assumption that communication can only be meaningful if humans can understand it. The deeper question is whether AI would even be able to convey the message to us, and whether we would be open to the idea that meaning may exist independently of our ability to understand it.

Project CETI demonstrates a sincere commitment to understanding whale communication and discovering human biases. Still, there remains a risk that others may interpret and use their findings in ways to reinforce human exceptionalism. Even though such interpretations might just be a sign that we are not (yet) equipped to recognize what counts as meaningful communication in other species. Is it even possible to take our human cognitive limitations fully into account when designing artificial intelligence intended to interpret non-human animal communication?

However, if successful, could this technology reveal new forms of knowledge about the natural world, entirely unfamiliar to human experience? If it turns out that whales have a communication system that can be classified as a language, it would challenge centuries of anthropocentric worldviews within society, science and philosophy. I believe that the development of this technology will bring us new insights about the intelligence of other beings, even though it raises incredibly complex (philosophical) questions. It is precisely these questions that will spark much-needed debates around anthropocentric definitions of intelligence and language.

The first step towards understanding other species

The questions I raised throughout this text are not easy to answer, because the truth is that we are only at the very beginning of understanding other species. What I am ultimately calling for is epistemic and moral humility, especially regarding the qualities we tend to celebrate as uniquely human. Humans are not the sole owners of all the knowledge and intelligence that exists in this world. I believe we should remain humble and open-minded to the possibility that there are layers of intelligence, communication, and understanding that lie beyond the human scope. And we should treat other beings on this planet accordingly, with the respect they deserve.

References

- 1 Gardner Allen R., Beatrice T. Gardner (1969). Teaching Sign Language to a Chimpanzee. *Science* 165 (1969): 664-672. DOI: 10.1126/science.165.3894.664
- 2 Premack, David (1971). On the Assessment of Language Competence in the Chimpanzee. In: *Behavior of Nonhuman Primates*, edited by Allan M. Schrier and Fred Stollnitz. New York: Academic Press
- 3 Rumbaugh, Duane M., Timothy V. Gill, Josephine V. Brown, E. Sue Savage-Rumbaugh, David Premack, and Pamela Pisani (1973). A Computer-Controlled Language Training System for Investigating the Language Skills of Young Apes. *Behavior Research Methods & Instrumentation* 5 (5): 385-92. doi.org/10.1109/TC.1976.5009203
- 4 Ben-Ari, Elia T. (1999). A Throbbing in the Air: The Discovery of Infrasonic Communication among Elephants Has Given Researchers a Whole New Way of Hearing Things. In: *BioScience* 49 (5): 353-58. doi.org/10.2307/1313627
- 5 Fay, Richard R., and Arthur N. Popper (2000). *Comparative Hearing: Mammals*. New York: Springer
- 6 Parsana, Ashwini J., Nanxin Li, and Thomas H. Brown (2012). Positive and Negative Ultrasonic Social Signals Elicit Opposing Firing Patterns in Rat Amygdala. In: *Behavioural Brain Research* 226 (1): 77-86. doi.org/10.1016/j.bbr.2011.08.040
- 7 Mikolov Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). *Efficient Estimation of Word Representations in Vector Space*. arXiv.org: 1301.3781
- 8 Artetxe, Mikel, Gorka Labaka, Eneko Agirre, Kyungkyun Cho (2017). *Unsupervised Neural Machine Translation*. arXiv.org: 1710.11041
- 9 Chung, Yu-An, Wei-Hung Weng, Schussing Tong, and James Glass (2018). *Unsupervised Cross-Modal Alignment of Speech and Text Embedding Spaces*. arXiv.org: 1805.07467
- 10 Andreas, Jacob, Gašper Beguš, Michael M. Bronstein, Roee Diamant, Denley Delaney, Shane Gero, Shafi Goldwasser, et al. (2021). *Cetacean Translation Initiative: A Roadmap to Deciphering the Communication of Sperm Whales*. arXiv.org: 2104.08614
- 11 Project CETI 92024). *The 2024 Annual Report*. 2024annualreport.projectceti.org

From the executive committee

First of all I wish you all the best for 2026! Even though in many ways a new year is not much more than a continuation of the previous year, it is good use this start of the year to look ahead. This year, we have a wonderful conference to look forward to with an interesting line of (keynote) speakers. I hope to see many of you there again.

This year, we will also be building on the actions initiated in 2025. This concerns, among others, the discussions within the board about the strategy regarding the composition of the board. During the GA in 2026, a number of board members will step down. We want to use this opportunity to take a broader look at the composition of the board with the aim of bringing more young colleagues onto the board while maintaining the representation of countries/regions and expertise and experience.

With this goal in mind, the board will approach people, but a vacancy will also be posted in the next EurSafeNews for you to apply for the board. In doing so, we want to actively invite everyone and make the process of recruiting board members more transparent.

Finally, I would like to say a few words about the online General Assembly that we held in early December. As well as formally approving the 2024 financial report – for which I would like to thank our treasurer, Joost van Herten – we had a valuable discussion about how to make EurSafe more attractive to early career scholars. Many thanks to those who joined us online and to the early career colleagues who provided me with input in advance. As a board, we will consider the feedback from this meeting at our next meeting in spring.

On behalf of the Executive Board,

Franck Meijboom

contact

President

Franck Meijboom

Ethics Institute, Utrecht University,
the Netherlands
f.l.b.meijboom@uu.nl

Vice-presidents

Bernice Bovenkerk

Philosophy Group, Wageningen
University, the Netherlands
bernice.bovenkerk@wur.nl

Herwig Grimm

Messerli Research Institute
University of Veterinary Medicine
Vienna, Austria
herwig.grimm@vetmeduni.ac.at

Secretary

Teea Kortetmäki

University of Jyväskylä, Finland
teea.kortetmaki@jyu.fi

Treasurer

Joost van Herten

Royal Veterinary Association of the
Netherlands, the Netherlands

Members

Diana Dumitras

University of Agricultural Science
and Veterinary Medicine Cluj-
Napoca, Romania
ddumitras@usamvcluj.ro

Leire Escajedo

University of the Basque Country,
Spain
leire.escajedo@ehu.es

Simon Meisch

University of Tuebingen, Germany
simon.meisch@uni-tuebingen.de

Bjørn Myskja

Norwegian University of Science and
Technology, Trondheim, Norway
bjorn.myskja@ntnu.no

Per Sandin

Swedish University of Agricultural
Sciences, Uppsala, Sweden
per.sandin@slu.se

Ivo Wallimann-Helmer

University of Zurich, Switzerland
ivo.wallimann-helmer@unifr.ch

Ariane Willemse

Federal Ethics Committee on Non-
Human Biotechnology (ECNH),
Switzerland
ariane.willemse@bafu.admin.ch

EurSafe News

Chief-editor

Simon Meisch

University of Tuebingen, Germany
simon.meisch@uni-tuebingen.de

Editorial Board

Raymond Anthony

University of Alaska Anchorage, US
ranthon1@uaa.alaska.edu

Mariska van Asselt

Aeres University of Applied Sciences
Dronten, the Netherlands
m.van.asselt@aeres.nl

Bernice Bovenkerk

Wageningen University, the
Netherlands
bernice.bovenkerk@wur.nl

Samuel Camenzind

Department of Philosophy
University of Vienna, Austria
samuel.camenzind@univie.ac.at

Jes Harfeld

Aalborg University, Denmark
harfeld@ikl.aau.dk

Hanna Schübel

UniFR_ESH Institute, Switzerland
hanna.schuebel@unifr.ch

Svenja Springer

Messerli Research Institute, Austria
svenja.springer@vetmeduni.ac.at

Layout

Luc Dinnissen

studio ds
Nijmegen, the Netherlands
www.studiods.nl

www.eursafe.org